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Condition for kink immobility in trigger systems with limited elimination of an inhibitor
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Both the direction and the velocity of kink movement through a distributed trigger system depend on
governing parameters that describe external factors affecting the system. Time and space scales for auto-
catalytic and inhibitory variables affect kink propagation as well. Coupled nonlinear one-dimensional
equations were analyzed to estimate the difference in the governing parameters needed to stop a kink un-
der conditions of zero and small but nonzero space scale for an inhibitory variable.

PACS number(s): 03.40.Kf, 02.30.Jr, 02.60.L;j

Without the loss of generality, two dependent vari-
ables, autocatalytic Y (r) and inhibitory X (r), are needed
for the proper description of the distributed trigger sys-
tem [1]. Nonlinear diffusionlike equations with different
time T, and space L, scales are to be written for
both variables. If T, =0 and L, =0, the system can be
reduced to one equation by eliminating X adiabatically.
In the following we will use the term “submission” (of the
inhibitory variable) as a synonym to the adiabatic elim-
ination.

Distributed trigger systems of a different nature are
characterized by two stable (basic) and one unstable sta-
tionary states which are uniform in space. Chemical
reactors [1-3], normal metals at low temperatures [4],
type-1 superconductors [5-8], and composite supercon-
ductors [4,9] are known examples. The system undergoes
transition from one basic state to the other when a
switching wave (kink) moves along the system transform-
ing it gradually in time. Under certain conditions the
kink is an immobile boundary between the basic states
[4,5,8—10]. Consider here the influence of a limited sub-
mission (T, <<T,,L, <<L,) of the inhibitory variable on
the condition of the kink immobility. Corresponding
one-dimensional equations can be written as

rX=eX"+F,X,Y,a), (1)

Y=Y"+F,(X,Y,a), )
where

T _[L)

T—Ty, € L

and a is a parameter describing external factors affecting
the system (governing parameter). Solutions

Y=Ff(X,a), 3)
Y=f,(X,a), 4)

of implicit equations

F(X,Y,a)=0, (5)
F,(X,Y,a)=0, (6)
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are known as null clines [1]. In the case of trigger sys-
tems, dependences given by Eqgs. (3) and (4) have three
points of intersection X,, Y,, t=1,2,3 corresponding to
uniform stationary states. The autocatalytic variable null
cline, Y=f,(X,a), is S shaped (see Fig. 1). Nevertheless,
the functions X =¢,(Y,a) and @,(Y,a) which are inverse
to the functions f(X,a) and f,(X,a), respectively, are
well defined.

If the kink is immobile, we can neglect the depen-
dences of variables on time. Then, in the case €e=0, Egs.
(1) and (2) are to be combined in

Y'+®(Y,a)=0, @)
where

O(Y,a)=F,(Y,p,(Y,a),a) .
There are three points Y, for which

P(Y,,a)=0. (8)

Equation (8) describes the movement of a particle of
unit mass in a given potential

Y.
S(Y,a)= [ ‘®(¥,a)dyY . ©)
1

Its solution, corresponding to the case when the particle
begins its movement in the point ¥ =Y, with zero veloci-
ty and finishes its movement in the point Y =Y; with
zero velocity as well, can be obtained if

S(Y;,a)=0. (10)
Also Eq. (10) gives the condition for the kink immobili-

X

FIG. 1. Typical null clines for trigger system [1].
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ty [4]. Together with Eq. (8) it defines the unique value
a.. At a=a, the shape of the immobile switching wave

is given in implicit form as
Y dY

z={(Y,a,), §{(Y,a. )= fyov_ﬁ;

, (D

where z is coordinate and Y, <Y, <Y;, z(Y,)=0 is an
arbitrary value. If £(z,a,) is an inverse function with
respect to (Y, a.), then the dependence of the inhibitory
variable on coordinate is

X=¢(&(z,a,),a,) . (12)

If the scale €70, € << 1, the dependence of the inhibito-
ry variable on the autocatalytic variable changes slightly
to match Eq. (1). Neglecting dependence on time, it fol-
lows

2
€ :id—qul(g(z,ac),ac) +F(X,Y,a,)=0. (13)
z

Using Eq. (11), the expression enclosed in brackets can be
written as a certain function of Y, i.e.,

e¥Y(Y,a, )+ F,(X,Y,a,)=0, (14)
where
d’p,(Y) de(Y)
Y(Y)=— |25(Y +P 15
(Y) (Y) 172 v (15)

For the sake of simplicity in the equations given here,
and in the following, we only assume dependence on pa-
rameter a.

Using Eq. (14) and considering an alteration of the
function ¢,(Y) due to the presence of the nonzero param-
eter € as variation, it follows
-1

dF,
ax

P Y)=@,(Y)—e¥(Y) , (16)

where @\|¢ represents the dependence of X on Y under the

conditions of limited submission, and

dF, 3F(X,Y)
X X

X=g,¥)

The corresponding variation of the function ®(Y) due
to the limited submission, i.e.,

SP(Y)=d'Y)—d(Y),

can be written as

8D(Y) v(Y) oF; |95, 17
=€ ax | ox ’
where
3F, dF,(X,Y)
39X — X  |x=¢1

A variation in ®(Y) produces an alteration of the po-
tential S in the point Y,
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Y,y
AS'Y~ [ 80(Y)dY . (18)
1

To return to the condition of the kink immobility
S(Y;)=0, it is necessary to change the governing param-
eter by the value Aa and by this produce a corresponding
alteration of the potential S in the point Y;

Y3 3d(Y,a) | .

(an i Solt Auadial . 9

AS Aafy1 ™ ¥a:ardY (19)
The kink is immobile if

AS'“'+AS'Y'=0, 120)

and substituting Eq. (15) we find that the alteration in the
governing parameter needed to stop the kink under the
condition of limited submission is

1

Y; OF, | 9F, GK 2 9¢,
Aa=— - 28 +®—— |dY
e==<[, %x |x ay? BY!
v D
i “L"i in . Q1)
Y, da a=a, |

Equation (21) though cumbersome in itself, allows us to
avoid the time consuming dynamic calculation of the
kink propagation in the trigger system described by two
diffusionlike equations. Note that, given immobility of
the kink, Eq. (21) is formally correct for any ratio of T,
and T,. Condition 7<<1 was chosen for avoiding the
problem of kink instability due to a front bifurcation [10].

One of the simplest examples of a distributed trigger
system is given by the equations of Belousov-Zhabotinskii
chemical reaction written in the form [1] which contain
not one but a few parameters governing the functions

F,=Y(1-VX)—yX , (22)
PY —«k 2 .

= —X)———X — <. 23]
F,=pY(1—X) 7 77X CcY (23)

Considering the case of a full submission, € =0, it follows

(Y,V,y)=- s (24)
@Y, V,y) YV iy
and
Y(V—1)+y
(D: Y—
B VY +y
Y(PY_‘K) 2 R
- —CY~- . (25)
(qY +) (VY +v)

All integrations assumed in Eq. (21) can eventually be
performed. However, for limits of the integration which
are the roots of Egs. (8) and (10) with function ® given by
Eq. (25), analytical expressions are too cumbersome. Be-
cause of this, simple numerical calculations were per-
formed. It was found that for e=0 at P =45, =45,
y=0.01, =0.5, ¢ =8, k=1, and C =1, the kink is im-
mobile when V' =1.1167. Given these parameters, Eq.
(21) was used to determine the changes in governing pa-
rameters ¥ and C needed to stop the switching wave for
the case of limited submission. The coefficient



kink movement towards one or the other end of the sam-
ple.

The next step was to introduce the small but nonzero
parameter € and to observe the kink movement in the
media described by Egs. (1) and (2) with boundary condi-
tions X =X,, Y=Y, on one side of the sample and
X =X,, Y=Y; on the other. By varying governing pa-
rameters it was possible to find the values V, and C,
needed to stop the kink. The dependences of the values
AV /e and AC /€ on € are shown in Fig. 2(a) and 2(b). It
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K= Aa -0.02
== |
was found to be w 003 :
N <
+0.763 if a=C =
K= . < oos 1
—0.045 if a=V .
To verify applicability of Eq. (21) for the estimation of ‘ . . |
the conditions of kink immobility, Eqgs. (1) and (2) for 00% 00 0.05 0.10
functions F, and F, given by Egs. (22) and (23) were €
solved by FDM. At every set of parameters the bound-
ary conditions corresponded to the stable stationary 0.80
states. The length of the sample exceeded the largest
scale of the problem many times. 070
First, Egs. (8) through (11) were used to calculate the w
shape of the switching wave in the case e=0. Then, the S
corresponding distribution Y =Y(z,a,) was taken as an < 0.60
initial condition to study kink propagation. In accor- ’
dance with previous results, the kink was immobile at
a=a,. The changing of the governing parameters lead 0.50 , . .
to the alteration of the switching wave’s form and to the 0.00 032 0.04

FIG. 2. Dependences of Aa on € for the Belousov-
Zhabotinskii chemical reaction: (a) a=V, (b) a=C.

can be seen that at e—0 these dependences approach the
values of the coefficient K calculated earlier.

The author thanks A. V. Volodin for help in numerical
calculations.
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